If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+20x-2600=0
a = 1; b = 20; c = -2600;
Δ = b2-4ac
Δ = 202-4·1·(-2600)
Δ = 10800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{10800}=\sqrt{3600*3}=\sqrt{3600}*\sqrt{3}=60\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-60\sqrt{3}}{2*1}=\frac{-20-60\sqrt{3}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+60\sqrt{3}}{2*1}=\frac{-20+60\sqrt{3}}{2} $
| -84=-4(4x+1) | | 6(1-4x)=8x+38 | | 60p=20 | | 6h+8-3h+2=15 | | 3x²-9x+6=0 | | -8(w+9)=-8 | | 2/3-2x=6 | | 12x+6=12x-4 | | 6x-4=-(32x-2) | | 6b-7=25 | | 1-x^2/2x^2-5x+2=0 | | ½x+3=4 | | (X-9)+x+(2x-5)=180 | | 240-x=213 | | 2x-9/5=-2 | | 31+y=304 | | -3a+4-2a=4 | | 23x-1=1000 | | 4.9-2.9u=-3.8 | | (-4x-5)(-4x+5)=(4x-3)² | | -24-12x=-24 | | -11-10(x+10)=4-5(2x+11) | | 13(−9x+6)=14 | | x+53=7 | | 8p=56p= | | 120-x=47 | | 20+4x+9=33 | | 100x^2-83x-183=0 | | 2n+5n=200 | | (3x+30)+(6x)=180 | | 2.5×m=10 | | 2(x-15)=7x-40 |